로지스틱 회귀는 이름은 회귀이지만 분류 모델이다. 선형 회귀와 마찬가지로 선형 방정식을 학습한다. z = a*x1 + b*x2 + c*x3 + d*x4 + e*x5 + f 와 같은 형태이다. 이 때 방정식의 a,b,c,d,e는 가중치 혹은 계수이고 x1~5는 특성이다. 다중 회귀와 비슷한 형태이다. z의 값은 어떤 값이든 가능하지만 확률로 나타내기 위해서는 0~1 사이 값이 되어야 한다. z의 값을 0~1 사이의 값으로 변환하기 위해서는 변환 함수가 필요하다. 일반적으로는 시그모이드 함수를 많이 쓴다. 아주 큰 음수일 때 0이 되고 아주 큰 양수일 때 1이 되도록 한다. 아래 그림처럼 S형 곡선의 형태를 띄게 된다. 함수 식은 자연 상수 e의 -z제곱에 +1을 한 다음 역수를 취한다. 로지스틱 회귀로 이..